

Lysis

LSA Series

Intelligent Flow Electronics

for Linearization and Temperature Compensation

User Manual

Lysis LSA Series, EN / 10396

Table of Contents

1	General			
2 Safety guidelines				
_	2.1	Marking of important information		
	2.2			
	۷.۷	General safety guidelines	4	
3	Description		5	
	3.1	List of available models	5	
	3.2	UVC Function	6	
	3.3	UVCpro	8	
	3.4	Technical data	9	
4	In	nstallation and commissioning	13	
•	4.1	After delivery		
	4.2	Programming (See FlowHow+ Programming manual)		
5	Troubleshooting		14	
	5.1	No output signal	14	
	5.2	Output values are implausible		
6	М	laintenance	15	
•		WII IVI IVI IVV		

1 General

Thank you for selecting a TrigasDM product for your flow measurement application.

Flow meter manufacture

As a specialist in flow measurement technology, TrigasDM supplies high-quality measuring instruments, electronics and calibrators for liquids and gases.

Made in Germany

Our products are exclusively developed and manufactured in Neufahrn, 20 km north of Munich, ensuring world-class technical know-how for our customers.

Contact

We are proud of our high-quality products and friendly customer service and welcome you as a valued customer to our growing family. You can benefit from our long-standing experience and our comprehensive technical support.

 TrigasDM GmbH
 Tel.: +49 8165 9999 300

 Erdinger Str. 2b
 Fax: +49 8165 9999 369

 85375 Neufahrn, Germany
 www.trigasdm.com

This user manual contains information on the description, operation, commissioning and maintenance of the *TrigasDM* Lysis Linearizer/flow computer. For special applications, repair or further information on this or other products, please contact *TrigasDM* directly.

This document can be changed by the manufacturer without prior notice. In case of doubt, please contact the manufacturer before use or ask for the latest revision of this and other relevant manuals. Warranty claims may become void if outdated documents are used.

TrigasDM GmbH Seite 3 von 16

2 Safety guidelines

2.1 Marking of important information

Important information is specially highlighted in this user manual.

CAUTION

Information related to danger to persons is marked with CAUTION.

ATTENTION

Information related to danger to equipment is marked with ATTENTION.

NOTE

Special information for operation, commissioning and maintenance is marked with NOTE.

Helpful hints

Hints marked with an "i" symbol provide application tips and other useful information, helping to avoid installation and application errors and ensure optimal use of the functions offered by the instrument. The text in the message box is displayed in italics.

2.2 General safety guidelines

Before using your TrigasDM instrument, this user manual and all safety instructions must be carefully read in their entirety and understood.

Take all necessary precautions to ensure the safety of personnel and equipment. These precautions include, but are NOT limited to, the following examples:

- Mechanical and electrical installations must only be carried out by qualified and authorized personnel.
- It must be ensured that the upper limit of the measuring range of the flow meter is not exceeded.
- Do not install measuring instruments and cables in the vicinity of strong magnetic sources, such as electrical cables, electric motors, transformers, welding equipment, relays or high-voltage cables. These sources can cause electrical noise, resulting in incorrect pulse signals.
- Flow meters which are designed for applications in liquids are not suitable for applications in gas.
- Applicable safety standards (for example the ones in accordance with the German Occupational Safety and Health Act) must be observed for the installation and/or operation of the flow meter.
 Non-observance can result in DANGER to personnel.
- A flow meter is a precision instrument. Do not use compressed air to clean the flow meter or check its function.

TrigasDM GmbH Seite 4 von 16

3 Description

3.1 List of available models

LSA-ST-05-V1-05-05-00 Round housing, TTL + Analog LSA-ST-05-V1-07-02-00 Rectangular housing, TTL + Analog LSA-ST-07-V1-07-07-00 Rectangular housing, Analog only LSA-ST-08-V1-07-08-00 Rectangular housing, CAN

Designation

• LSA Lysis Linearization Electronics / Flow Computer

Input signal

• ST - SMART-Pickoff with temperature sensor, 5 pin

Output Signal Options

- 05 0-10 V flow rate + 0-10 V temperature + raw frequency + TTL pulses
- 07 0-10 V flow rate + 0-10 V temperature
- 08 CAN

Supply voltage

V1 - 6-36 VDC

Housing options

- 05 Lysis Round housing IP68
- 07 Lysis Square housing IP68

Connector configuration (input/output)

- 02 ODU F G81F1C-P05QJ00/2x ODU B G81B0C-P08RJ00
- 05 ODU B G81B0C-P05QJ00/ODU G81B0C-P08RJ00
- 07 ODU F G11F1C-P05LJG0/2x ODU G81F1C-P05QJ00
- 08 ODU B G81B0C-P05QJ00/2x Lemo HGA.0B.309

Wiring

• 00 - standard

TrigasDM GmbH Seite 5 von 16

3.2 UVC Function

The Lysis LSA Series Plug-and-Measure Linearizer/Flow Computer corrects the frequency output of Turbine flowmeters for the effects of temperature and viscosity. It also linearizes and scales the Flow and Temperature outputs in a variety of formats including CAN.

All data are stored in the Smart-Pickoff which is part of the turbine flowmeter. Up to five selectable Flowmeter Calibration Curves and up to five Fluid Properties Tables can be stored in memory in the Smart-Pickoff, making it a versatile flow measuring instrument.

Upon connection with ANY TrigasDM Smart-Pickoff equipped flowmeter, Lysis gains access to the following information and signals from the Smart-Pickoff via a 5-pin shielded, high temperature resistant cable:

- Flowmeter Frequency
- Temperature
- Flow Meter identification (Model and Serial number)
- Calibration and Fluid Properties data

The user-friendly FlowHow+ programming software allows easy programming of flow calibration and fluid properties data as well as linearization and scaling of Flow and Temperature outputs.

The **Standard** Temperature Compensation mode corrects in real time for the effects of temperature and viscosity using UVC methods to perform accurate flow measurement under all conditions. The UVC method for temperature compensation has been specifically designed for turbine flowmeters.

Viscosity Influence

At constant flow, the change in viscosity has the following effect on the frequency output of a turbine flowmeter:

- Viscosity increases → output frequency of the turbine flowmeter decreases
- Viscosity decreases → output frequency of the turbine flowmeter increases

This relationship is illustrated below, in the graph of flowmeter K-factor [pulse/lit] vs frequency [Hz].

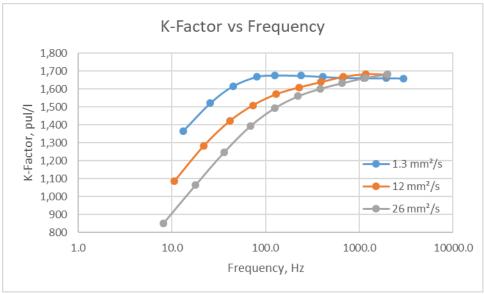


Figure 1 Diagram K factor vs frequency

TrigasDM GmbH Seite 6 von 16

Compensation of the effect of viscosity
 A turbine flow meter's K-factor can be presented as a single, unique curve when plotted against Reynold's number, which is approximated by the ratio Frequency/Viscosity (Freq/v) as shown graphically below: [Figure2]:

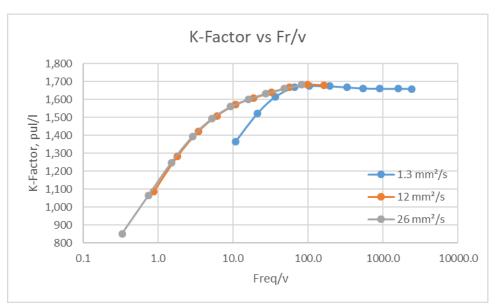


Figure2 UVC graph

It can be seen that there are deviations from ideal behavior at low viscosities and very low flowrates. These deviant calibration points are ignored in the subsequent linearization and temperature compensation.

Calculation method

Fluid Properties Tables of Temperature vs Viscosity and Temperature vs Density for the operating medium are programmed into the electronics (See FlowHow+ programming manual). The viscosity of the operating fluid is continuously determined from the Temperature measurement using the fluid tables. The Flow Calculation sequence is as follows:

- Measurement of the actual flowmeter frequency
- Measurement of the actual fluid temperature
- Calculation of the current frequency/viscosity value
- o Determination of the current K-factor from the K-Factor vs Fr/v table (Fig. 2)
- Calculation of the Volumetric flow rate (Q=frequency/K factor)
 Optional: Calculation of the mass flow rate using the Fluid Properties Tables
- Scaling the actual temperature Analog output
- Scaling and output of the current flow at Analog and frequency output

TrigasDM GmbH Seite 7 von 16

3.3 UVCpro

UVCpro is a method developed by TrigasDM for intelligent compensation of the viscosity influence, which works completely automatically. No additional UVC file will have to be created, which allows the method to be used by people without expert level flow knowledge.

UVCpro uses individual calibrations at different viscosities and independently calculates all necessary corrections with great accuracy even in the non-linear low flow region of turbine flowmeters.

With this proprietary Compensation method activated, unprecedented levels of accuracy are possible over the full extended flowmeter range (up to 130:1).

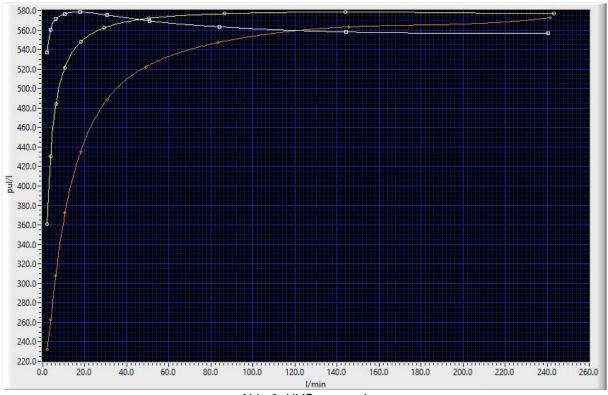


Abb. 3: UVCpro graph

TrigasDM GmbH Seite 8 von 16

3.4 Technical data

• Power supply: 6 - 36 VDC

Power consumption: < 0.5W, approx. 35 mA @ 12 V

Update time: 1 ms

Operating temperature: -40 to +125 °C
 Storage temperature: -55 to +150 °C

Ambient humidity: 0 to 85 % relative, non-condensing

Eingang/Ausgang: Galvanisch getrennt

Housings

Round Housing, IP68 Weight: 145 g

Dimensions: L x \emptyset = 95 x 30 mm including connectors

Square Housing, IP68

Weight: 245 g, depending on configuration

Dimensions: L x W x H = $122 \times 55 \times 34 \text{ mm}$ including connectors, depending on configuration

Input signals

The electronics receive the following signals from the SMART-Pickoff via a 5-pin shielded, high temperature resistant cable

- Amplitude modulated carrier signal of the flow meter
- Temperature signal
- Flow Meter identification (Model and Serial number)
- Calibration and Fluid Properties data

Output signals Galvanically isolated from supply voltage

Frequency, Flow

Linearized and scaled frequency TTL related to isolated mass

- Scalable end value up to 10 kHz
- \circ O_{utput} = 2,2 k Ω
- Accuracy = 25 ns

The output level can also be configured as follows:

- 10 [V] or
- Power supply (in this case there is no galvanic isolation of the frequency from the power supply).
- Analog, Flow
 - 0 10 V linearized, scalable
 - No zero-point offset
 - Accuracy = 0,0015 % of full Scale
 - Resolution = 16 bits (0,15 mV)
 - o Optional: 4 20 mA

TrigasDM GmbH Seite 9 von 16

- Analog, Temperature
 - 0 10 V linearized, scalable
 - No zero-point offset
 - o Accuracy = 0,0015 % of final value
 - o Resolution = 16 bits (0,15 mV)
 - o Optional: 4 20 mA
- Optionally, a CAN output for temperature and flow can be configured at the factory.

Linearization

The electronics are capable of holding in internal storage for the purpose of linearization and interpolation of up to five different calibration sets, each with up to 64 points in the following forms:

• K factor [pul/I] vs frequency/viscosity [Hz/mm²/s]

TrigasDM GmbH Seite 10 von 16

X

Cubic Spline

In addition to linear inter- and extrapolation of the Calibration Curve (Figure 4), the Lysis/TriLIN electronics also support Cubic Spline interpolation (Figure 5).

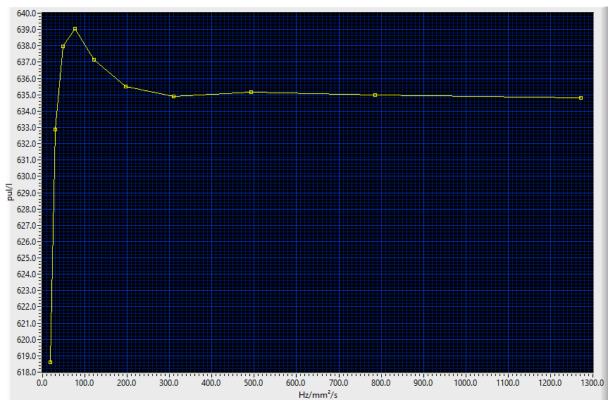


Figure 4 Linear interpolation

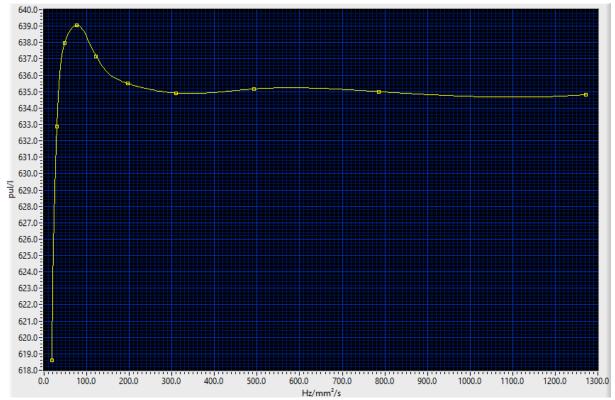


Figure 5 Cubic spline interpolation

TrigasDM GmbH Seite 11 von 16

Liquid Data

The electronics are capable of holding in internal storage for the purpose of linearization and interpolation of up to five different fluid data table sets, each with up to 20 points in the following forms:

- Temperature vs viscosity
- Temperature vs density

Detailed information on changing the fluid data is provided in the FlowHow+ programming manual.

Andrade

Andrade's equation is a specialized calculation algorithm employed in the Lysis/TriLIN electronics to enable accurate inter- and extrapolation of liquid viscosity data.

Color LED activity explanation

3x flashing Green	000	Power supply active, device starts up SMART Mode - Pickoff data is read
3x flashing Yellow	000	Power supply active, device starts up. Internal Mode - Pickoff data is NOT read
Red permanent		Data reading process / data not recognized
Green permanent		Data detected, temperature detected, no frequency input detected.
Yellow permanent		Data detected, temperature not detected
Red flashing	0	Data detected, temperature detected, frequency input detected, flow not in calibrated range.
Green flashing	•	Data detected, temperature detected, frequency input detected, flow rate in calibrated range.

TrigasDM GmbH Seite 12 von 16

4 Installation and commissioning

4.1 After delivery

Please carefully unpack the electronics and ensure that they are free of packaging material leftovers and check for transport damage.

4.2 Programming (See FlowHow+ Programming manual)

The following tools are required for programming the TrigasDM electronics:

- Power supply with 6-36 VDC
- PC with USB interface and Windows operating system
- TrigasDM electronics
- Programming cable/modem
- Multimeter for the functional tests
- FlowHow+ Programming Software

The FlowHow+ software automatically adapts to the hardware configuration. It can thus be used for programming for any TrigasDM electronics. The functionality may vary depending on the configuration of the product.

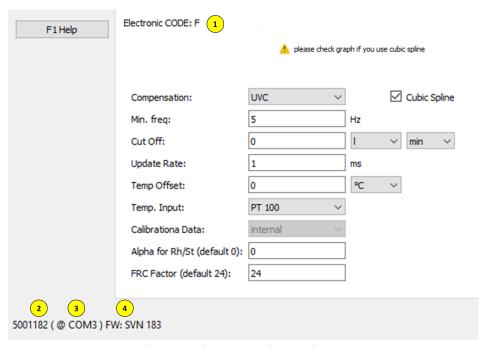


Figure 6 Information of the software

- (1) Configuration code of the hardware (Figure6)

 The software functionality is automatically adapted to the configuration code.
- (3) COM port (Figure6)
 Is automatically selected

(2) PCB serial number (Figure 6)

(4) Firmware rev (Figure 6)

Only one instance of the The FlowHow+ software can be active on any one computer at any one time.

TrigasDM GmbH Seite 13 von 16

5 Troubleshooting

5.1 No output signal

If no output signal is detected coming out of the electronics, the following measures can be carried out:

► Check supply voltage (6-36 VDC)

The standard power consumption is up to 75 mA @ 6V, depending on the configuration

- Current > 100 mA: The circuit board is defective.
- Current = 0 mA: Electronics have been disconnected incorrectly.
- Check the functionality of the flowmeter

Do not test the flow meter with compressed air! It can be damaged!

- Check the functionality of the pickoff:
 - Remove of the pickoff from the flow meter
 - Move iron element back and forth under the pickoff. Pulses should be detected.
- Measure pickoff resistance:
 - \circ RF transducer = 10Ω 15%
- Check the status of the electronics in live RUN mode

5.2 Output values are implausible

If the output signal of the electronics is incorrect, the following measures can be carried out:

- ► Check to ensure live RUN mode is turned on in the FlowHow+ software
- ► Check Temperature sensor (or Temperature Analog input signal).
- ▶ Compare the Analog temperature output with the actual temperature of the medium.

TrigasDM GmbH Seite 14 von 16

6 Maintenance

The Lysis electronics are maintenance-free.

However, attention should be paid to performing regular calibration and, if necessary, replacement of defective flowmeters! The recalibration intervals can be defined based on the following:

- Type of flow meter
- System design
- Environmental and operating conditions
- Measuring liquid
- Age

Please consult your flowmeter manual.

TrigasDM GmbH Seite 15 von 16

TrigasDM GmbH Seite 16 von 16